Carbon Steel Strong-Bolt® 2 Installation Information¹

Oh averate statis	O	11	Nominal Anchor Diameter, da (in.)											
Unaracteristic	Symbol	Units	1/44	3/	8 ⁵		1⁄2 5		5	⁄8 ⁵	3/	4 ⁵	1	5
				Instal	lation Inf	ormation								
Nominal Diameter	da	in.	1⁄4	3,	/8		1⁄2		5	/8	3	4		1
Drill Bit Diameter	d	in.	1⁄4	3,	/8		1⁄2		5⁄8		3⁄4		1	
Baseplate Clearance Hole Diameter ²	d _c	in.	5⁄16	7/	, 16		9⁄16		11/16		7⁄8		1 1⁄8	
Installation Torque	T _{inst}	ft-lbf	4	3	0	60			90		150		23	30
Nominal Embedment Depth	h _{nom}	in.	1¾	1 7⁄8	21⁄8	2¾		37⁄8	3%	51⁄8	41⁄8	5¾	51⁄4	9¾
Effective Embedment Depth	h _{ef}	in.	1 1⁄2	1 1⁄2	21⁄2	2	1⁄4	3%	2¾	4 1⁄2	3%	5	41⁄2	9
Minimum Hole Depth	h _{hole}	in.	1 7⁄8	2	3		3	41⁄8	3%	5%	43⁄8	6	5½	10
Minimum Overall Anchor Length	lanch	in.	21⁄4	2¾	3½	3	3⁄4	5½	41⁄2	6	5½	7	7	13
Critical Edge Distance	Cac	in.	21⁄2	6½	6	6½	6½	71⁄2	71⁄2	9	9	8	18	13½
Mising Edge Distance	C _{min}	in.	1¾	ſ	3	-7	4	4	6	1⁄2	6	1/2		8
Minimum Eage Distance	for $s \ge$	in.		-	-	-		_	-	_	8	3	_	
Minimum Creating	S _{min}	in.	21⁄4	3	3	7 4		4	5		7		8	
Minimum Spacing	for $c \ge$	in.		-	_	—		—	-	_			_	_
Minimum Concrete Thickness	h _{min}	in	31⁄4	31⁄4	41⁄2	41⁄2	5½	6	5½	71⁄8	6¾	8¾	9	13½
				A	dditional	Data								
Yield Strength	f _{ya}	psi	56,000	92,	000	85,000					70,	000	60,	000
Tensile Strength	f _{uta}	psi	70,000				115,000				110	,000	78,	000
Minimum Tensile and Shear Stress Area	A _{se}	in.2	0.0318	0.0514		0.105		0.166		0.270		0.472		
Axial Stiffness in Service Load Range — Cracked and Uncracked Concrete	β	lb./in.	73,700 ³	34,820		63,570			91,370		118,840		299,600	

1. The information presented in this table is to be used in conjunction with the design criteria of ACI 318 Appendix D.

2. The clearance must comply with applicable code requirements for the connected element.

3. The tabulated value of β for 1/4-inch diameter carbon steel Strong-Bolt 2 anchor is for installations in uncracked concrete only.

4. The 1/4-inch-diameter (6.4mm) anchor may be installed in top of uncracked normal-weight and sand-lightweight concrete over profile steel deck, where concrete thickness above upper flute meets the minimum thickness specified in this table.

5. The %-inch-through 1-inch-diameter (9.5mm through 25.4mm) anchors may be installed in top of cracked and uncracked normal-weight and sand-lightweight concrete over profile steel deck, where concrete thickness above upper flute meets the minimum thickness specified in this table.

Stainless-Steel Strong-Bolt® 2 Installation Information¹

Characteristic	Cumbal	Unite			No	minal An	chor Diam	ieter, d _a	(in.)			
Gnaracteristic	Symbol	Units	1/44	3	⁄8 ⁵		1⁄25		5	⁄8 ⁵	3	4 ⁵
			Installation In	formation								
Nominal Diameter	da	in.	1⁄4	3	8/8		1⁄2		5	/8	3	V4
Drill Bit Diameter	d	in.	1⁄4	s	%		1⁄2		5	/8	3⁄4	
Baseplate Clearance Hole Diameter ²	d _c	in.	5⁄16	7,	16		9⁄16		11/16		7/8	
Installation Torque	T _{inst}	ft-lbf	4	3	30	60		80		150		
Nominal Embedment Depth	h _{nom}	in.	1 3⁄4	1 7/8 27/8		2¾	37⁄8		3¾	51⁄8	41⁄8	5¾
Effective Embedment Depth	h _{ef}	in.	1 1⁄2	11/2 11/2 21/2		21⁄4	33%8		2¾	41⁄2	3%	5
Minimum Hole Depth	h _{hole}	in.	1 7⁄8	2 3		3	41⁄8		3%	53⁄8	43⁄8	6
Minimum Overall Anchor Length	lanch	in.	21⁄4	2¾	23⁄4 31⁄2		5	1/2	41⁄2	6	5½	7
Critical Edge Distance	C _{ac}	in.	21/2	6½	81⁄2	41⁄2	7	7	71⁄2	9	8	8
	C _{min}	in.	13⁄4		6		5	4		4		6
Minimum Edge Distance	for $s \ge$	in.	_	1	0		_	8		8	-	_
	S _{min}	in.	21⁄4		3	8	5½	4	6	1⁄4	6	1/2
Minimum Spacing	for $c \ge$	in.		1	10		_	8	5	1/2	-	_
Minimum Concrete Thickness	Minimum Concrete Thickness h _{min} in.		31⁄4	31⁄4	41⁄2	41⁄2 6		51/2 77/8		6¾	8¾	
			Additiona	I Data								
Yield Strength	f _{ya}	psi	96,000	80,	000		92,000	92,000 82,000		68,	000	
Tensile Strength	f _{uta}	psi	120,000	100	,000		115,000		108	,000	00 95,0	

1. The information presented in this table is to be used in conjunction with the design criteria of ACI 318 Appendix D.

Ase

β

2. The clearance must comply with applicable code requirements for the connected element.

Minimum Tensile and Shear Stress Area

Axial Stiffness in Service Load Range ----

Cracked and Uncracked Concrete

3. The tabulated value of β for 1/4-inch diameter stainless steel Strong-Bolt 2 anchor is for installtions in uncracked concrete only.

in.2

lb./in.

4. The ¼-inch-diameter (6.4mm) anchor may be installed in top of uncracked normal-weight and sand-lightweight concrete over profile steel deck, where concrete thickness above upper flute meets the minimum thickness specified in this table.

0.0255

54,430³

0.0514

29,150

0.105

54,900

0.166

61,270

0.270

154,290

5. The %-inch-through %-inch-diameter (9.5mm through 19.1mm) anchors may be installed in top of cracked and uncracked normal-weight and sand-lightweight concrete over profile steel deck, where concrete thickness above upper flute meets the minimum thickness specified in this table.

Carbon Steel Strong-Bolt® 2 Tension Strength Design Data1

	Ormalia	11-24-	Nominal Anchor Diameter, d _a (in.)												
Characteristic	Symbol	Units	1⁄48	3	/8 ⁹	1	′2 ⁹	5,	⁄8 ⁹	3/.	4 ⁹	1	9		
Anchor Category	1, 2 or 3	_				1	1					:	2		
Nominal Embedment Depth	h _{nom}	in.	1 3⁄4	1 7⁄8	21⁄8	2¾	31⁄8	3¾	51⁄8	41⁄8	5¾	5¼	9¾		
		St	eel Strength in Te	ension (A	CI 318 Se	ection D.5	5.1)								
Steel Strength in Tension	N _{sa}	lb.	2,225	5,6	600	12,	100	19	070	29,	700	36,	815		
trength Reduction Factor — Steel Failure ²	$\phi_{\scriptscriptstyle S\!a}$	—				0.	75					0.	65		
	(Concrete	Breakout Strengt	th in Tens	ion (ACI 3	318 Secti	on D.5.2)	10							
Effective Embedment Depth	h _{ef}	in.	1 1⁄2	1 1⁄2	2½	21⁄4	3%	2¾	41⁄2	3%	5	41⁄2	9		
Critical Edge Distance	C _{ac}	in.	21⁄2	6½	6	6½	71⁄2	71⁄2	9	9	8	18	13½		
Effectiveness Factor — Uncracked Concrete	k _{uncr}	_					2	4							
Effectiveness Factor — Cracked Concrete	k _{cr}	_	7	17											
Modification Factor	$\Psi_{c,N}$	_	_7					1.	00						
Strength Reduction Factor — Concrete Breakout Failure ³	ϕ_{cb}	_				0.6	65					0.55			
		Pull	out Strength in T	ension (A	CI 318 Se	ection D.S	5. 3) ¹⁰								
Pullout Strength, Cracked Concrete (f' $_c$ =2,500 psi)	N _{p,cr}	lb.	7	1,3005	2,7755	N/A ⁴	3,7355	N/A ⁴	6,9 85⁵	N/A ⁴	8,5005	7,7005	11,1855		
Pullout Strength, Uncracked Concrete (f' $_c$ =2,500 psi)	N _{p,uncr}	lb.	N/A ⁴	N/A ⁴	3,3405	3,615⁵	5,2555	N/A ⁴	9,0255	7,115⁵	8,8705	8,3605	9,6905		
Strength Reduction Factor — Pullout Failure ⁶	$\phi_{ ho}$	_	0.65						0.55						
	Те	nsile Stre	ength for Seismic	Applicat	ions (ACI	318 Sec	tion D.3.3	.)10							
Tension Strength of Single Anchor for Seismic Loads (f' $_{c}$ =2,500 psi)	N _{p.eq}	lb.	7	1,3005	2,7755	N/A ⁴	3,7355	N/A ⁴	6,9855	N/A ⁴	8,5005	7,7005	11,1855		
Strength Reduction Factor — Pullout Failure ⁶	ϕ_{eq}	_				0.6	65					0.	55		

1. The information presented in this table must be used in conjunction with the design criteria of ACI 318 Appendix D, except as modified below.

The tabulated value of \$\phi_{sa}\$ applies when the load combinations of Section 1605.2.1 of the IBC or ACI 318 Section 9.2 are used. if the load combinations of ACI 318 Appendix C are used, the appropriate value of \$\phi_{sa}\$ must be determined in accordance with ACI 318 D.4.4. Strong-Bolt 2 anchors are ductile steel elements as defined in ACI 318 D.1.

3. The tabulated value of \u03c6_{cb} applies when both the load combinations of Section 1605.2.1 of the IBC or ACI 318 Section 9.2 are used and the requirements of ACI 318 D.4.3(c) for Condition B are met. Condition B applies where supplementary reinforcement is not provided. For installations where complying supplementary reinforcement can be verified, the \u03c6_{cb} factors described in ACI 318 D.4.3 for Condition A are allowed. If the load combinations of ACI 318 Section 9.2 are used and the requirements of ACI 318 Section D.4.3 for Condition A are met, the appropriate value of \u03c6_{cb} must be determined in accordance with ACI 318 D.4.3(c). If the load combinations of ACI 318 Appendix C are used, the appropriate value of \u03c6_{cb} must be determined in accordance with ACI 318 D.4.3(c).

4. N/A (not applicable) denotes that pullout resistance does not need to be considered.

5. The characteristic pullout strength for greater concrete compressive strengths shall be increased by multiplying the tabular value by (fr_c/2,500 ps)^{0.5}.

6. The tabulated value of φ_p or φ_{eq} applies when the load combinations of Section 1605.2.1 of the IBC or ACI 318 Section 9.2 are used and the requirements of ACI 318 D.4.3(c) for Condition B are met. if the load combinations of ACI 318 Appendix C are used, appropriate value of φ must be determined in accordance with ACI 318 Section D.4.4(c).

7. The ¼-inch diameter carbon steel Strong-Bolt 2 anchor installation in cracked concrete is beyond the scope of this report.

8. The ¼-inch diameter (6.4mm) anchor may be installed in top of uncracked normal-weight and sand-lightweight concrete over profile steel deck, where concrete thickness above upper flute meets the minimum thickness specified in the table on page 146.

9. The %-inch through 1-inch diameter (9.5mm through 25.4mm) anchors may be installed in top of cracked and uncracked normal-weight and sand-lightweight concrete over profile steel deck, where concrete thickness above upper flute meets the minimum thickness specified in the table on page 146.

10. For sand-lightweight concrete, in lieu of ACI 318 Section D.3.6, modify the value of concrete breakout strength N_{p,cr}, N_{p,uncr} and N_{eq} by 0.6. All-lightweight concrete is beyond the scope of this table.

C-A-2016 @ 2015 SIMPSON STRONG-TIE COMPANY INC.

SIMPSON Strong-Tie

Strong-Tie

IBC

Stainless-Steel Strong-Bolt® 2 Tension Strength Design Data¹

Simpson Strong-Tie® Anchoring and Fastening Systems for Concrete and Masonry

Strong-Bolt[®] 2 Design Information — Concrete

Characteristic	Symbol	Unito			Nomina	I Anchor	Diameter	; d _a (in.)			
	Зуший	UIIIIS	1/410	3/	/ 11 8	1/	2 ¹¹	5/	/ ¹¹ 8	3/	4 ¹¹
Anchor Category	1, 2 or 3	—					1				
Nominal Embedment Depth	h _{nom}	in.	13⁄4	1 1 1/8	21⁄8	2¾	37⁄8	3¾	51⁄8	41⁄8	5¾
	Steel Stre	ength in T	ension (ACI 318 S	ection D.	5.1)						
Steel Strength in Tension	N _{sa}	lb.	3,060	5,1	40	12,	075	17,	930	25,	650
Strength Reduction Factor — Steel Failure ²	$\phi_{\scriptscriptstyle S\!a}$					0.	75				
Concr	ete Breako	ut Streng	th in Tension (ACI	318 Sect	ion D.5.2)12					
Effective Embedment Depth	h _{ef}	in.	11⁄2	1 1⁄2	21⁄2	21⁄4	3%	2¾	41⁄2	3%	5
Critical Edge Distance	C _{ac}	in.	21/2	61/2 81/2 41/2 7 71/2 9							8
Effectiveness Factor — Uncracked Concrete	<i>k</i> _{uncr}	_		24							
Effectiveness Factor — Cracked Concrete	k _{cr}	_	9				1	7			
Modification Factor	$\psi_{c,N}$		9				1.(00			
Strength Reduction Factor — Concrete Breakout Failure ³	ϕ_{cb}	_		0.65							
	Pullout Stre	ength in T	ension (ACI 318 S	ection D.	5.3) ¹²						
Pullout Strength, Cracked Concrete (f'c=2,500 psi)	N _{p,cr}	lb.	9	1,7206	3,1456	2,5605	4,3055	N/A ⁴	6,545 ⁷	N/A ⁴	8,2305
Pullout Strength, Uncracked Concrete (f'_c=2,500 psi)	N _{p,uncr}	lb.	1,9257	N/A ⁴	4,7706	3,2305	4,4955	N/A^4	7,6155	7,7257	9,6257
Strength Reduction Factor — Pullout Failure ⁸	ϕ_p	—				0.	65				
Tensile	Strength fo	or Seismio	Applications (AC	l 318 Sec	tion D.3.	3.) ¹²					
Tension Strength of Single Anchor for Seismic Loads (f'_c=2,500 psi)	N _{p.eq}	lb.	9	1,7206	2,8306	2,5605	4,3055	N/A ⁴	6,5457	N/A ⁴	8,2305
Strength Reduction Factor — Pullout Failure ⁸	ϕ_{eq}		0.65								

1. The information presented in this table must be used in conjunction with the design criteria of ACI 318 Appendix D, except as modified below.

The tabulated value of \$\phi_{sa}\$ applies when the load combinations of Section 1605.2.1 of the IBC or ACI 318 Section 9.2 are used. if the load combinations of ACI 318 Appendix C are used, the appropriate value of \$\phi_{sa}\$ must be determined in accordance with ACI 318 D.4.4. Strong-Bolt 2 anchors are ductile steel elements as defined in ACI 318 D.1.

3. The tabulated value of \u03c6_{cb} applies when both the load combinations of Section 1605.2.1 of the IBC or ACI 318 Section 9.2 are used and the requirements of ACI 318 D.4.3(c) for Condition B are met. Condition B applies where supplementary reinforcement is not provided. For installations where complying supplementary reinforcement can be verified, the \u03c6_{cb} factors described in ACI 318 D.4.3 for Condition A are allowed. If the load combinations of ACI 318 Section 9.2 are used and the requirements of ACI 318 Section D.4.3 for Condition A are met, the appropriate value of \u03c6_{cb} must be determined in accordance with ACI 318 D.4.3(c). If the load combinations of ACI 318 Appendix C are used, the appropriate value of \u03c6_{cb} must be determined in accordance with ACI 318 D.4.3(c).

4. N/A (not applicable) denotes that pullout resistance does not need to be considered.

5. The characteristic pullout strength for greater concrete compressive strengths shall be increased by multiplying the tabular value by (fr_o/2,500 psi)^{0.5}.

6. The characteristic pullout strength for greater concrete compressive strengths shall be increased by multiplying the tabular value by (f⁺_o/2,500 psi)^{0.3}.

7. The characteristic pullout strength for greater concrete compressive strengths shall be increased by multiplying the tabular value by (f'₀/2,500 psi)^{0.4}.

- The tabulated value of φ_p or φ_{eq} applies when the load combinations of Section 1605.2.1 of the IBC or ACI 318 Section 9.2 are used and the requirements of ACI 318 D.4.3(c) for Condition B are met. if the load combinations of ACI 318 Appendix C are used, appropriate value of φ must be determined in accordance with ACI 318 Section D.4.4(c).
- 9. The ¼-inch diameter stainless steel Strong-Bolt 2 anchor installation in cracked concrete is beyond the scope of this report.

10. The 1/4-inch diameter (6.4mm) anchor may be installed in top of uncracked normal-weight and sand-lightweight concrete over profile steel deck, where concrete thickness above upper flute meets the minimum thickness specified in the table on page 147.

11. The %-inch through %-inch diameter (9.5mm through 19.1mm) anchors may be installed in top of cracked and uncracked normal-weight and sand-lightweight concrete over profile steel deck, where concrete thickness above upper flute meets the minimum thickness specified in the table on page 147.

12. For sand-lightweight concrete, in lieu of ACI 318 Section D.3.6, modify the value of concrete breakout strength N_{p,cr}, N_{p,uncr} and N_{eq} by 0.6. All-lightweight concrete is beyond the scope of this table.

Carbon Steel Strong-Bolt® 2 Shear Strength Design Data¹

Characteristic	Cumbol	Unito	Nominal Anchor Diameter, d _a (in.)										
Gharacteristic	Symbol	Units	1⁄4 ⁶	3/	8 ⁷	1/	2 ⁷	5/8	3 ⁷	3/	1 ⁷	1	7
Anchor Category	1, 2 or 3	—					1					2	2
Nominal Embedment Depth	h _{nom}	in.	1¾	1 7⁄8	21⁄8	2¾	37⁄8	3¾	51⁄8	41⁄8	5¾	51⁄4	9¾
			Steel Strength in	Shear (Al	CI 318 Se	ction D.6	5.1)						
Steel Strength in Shear	V _{sa}	lb.	965	1,8	800	7,2	235	11,(035	14,4	480	15,	020
Strength Reduction Factor — Steel Failure ²	ϕ_{sa}	_				0.	65					0.	60
		Concre	te Breakout Stren	gth in Sh	ear (ACI :	318 Sect	ion D.6.2)	8					
Outside Diameter	da	in.	0.25	0.3	375	0.5	500	0.6	25	0.7	50	1.0	00
oad-Bearing Length of Anchor in Shear	le	in.	1.500	1.500	2.500	2.250	3.375	2.750	4.500	3.375	5.000	4.500	8.000
Strength Reduction Factor — Concrete Breakout Failure ²	ϕ_{cb}	_					0.	70					
		Conci	rete Pryout Streng	th in She	ar (ACI 3	18 Sectio	on D.6.3)						
Coefficient for Pryout Strength	k _{cp}	—	1.0		2.0	1.0				2.0			
Effective Embedment Depth	h _{ef}	in.	1 1⁄2	1 1⁄2	21⁄2	21⁄4	3¾	2¾	41⁄2	3¾	5	41⁄2	9
Strength Reduction Factor — Concrete Pryout Failure ⁴	ϕ_{cp}	_					0.	70					
	Ste	el Streng	th in Shear for Se	ismic App	olications	(ACI 318	Section I	D.3.3.)					
Shear Strength of Single Anchor for Seismic Loads (f'_c=2,500 psi)	V _{sa.eq}	lb.	<u> </u>			6,5	6,510 9,930			11,775		15,020	
Strength Reduction Factor — Steel Failure ²	ϕ_{sa}			0.65				I		0.60			

1. The information presented in this table must be used in conjunction with the design criteria of ACI 318 Appendix D, except as modified below.

2. The tabulated value of φ_{sa} applies when the load combinations of Section 1605.2.1 of the IBC or ACI 318 Section 9.2 are used and the requirements of ACI 318 D.4.3(c) for Condition B are met. if the load combinations of ACI 318 Appendix C are used, the appropriate value of φ_{sa} must be determined in accordance with ACI 318 D.4.4. Strong-Bolt 2 anchors are ductile steel elements as defined in ACI 318 D.1.

3. The tabulated value of ϕ_{cb} applies when both the load combinations of Section 1605.2.1 of the IBC or ACI 318 Section 9.2 are used and the requirements of ACI 318 D.4.3(c) for Condition B are met. Condition B applies where supplementary reinforcement is not provided. For installations where complying supplementary reinforcement can be verified, the ϕ_{cb} factors described in ACI 318 D.4.3 for Condition A are allowed. If the load combinations of ACI 318 Section 9.2 are used and the requirements of ACI 318 Section D.4.3 for Condition A are met, the appropriate value of ϕ_{cb} must be determined in accordance with ACI 318 D.4.3(c). If the load combinations of ACI 318 Appendix C are used, the appropriate value of ϕ_{cb} must be determined in accordance with ACI 318 D.4.3(c).

4. The tabulated value of ϕ_{CD} applies when both the load combinations of ACI 318 Section 9.2 are used and the requirements of ACI 318 D.4.3(c) for Condition B are met. If the load combinations of ACI 318 Appendix C are used, appropriate value of ϕ_{CD} must be determined in accordance with ACI 318 Section D.4.4(c).

5. The ¼-inch diameter carbon steel Strong-Bolt 2 anchor installation in cracked concrete is beyond the scope of this report.

6. The ¼-inch diameter (6.4mm) anchor may be installed in top of uncracked normal-weight and sand-lightweight concrete over profile steel deck, where concrete thickness above upper flute meets the minimum thickness specified in the table on page 146.

7. The %-inch through 1-inch diameter (9.5mm through 25.4mm) anchors may be installed in top of cracked and uncracked normal-weight and sand-lightweight concrete over profile steel deck, where concrete thickness above upper flute meets the minimum thickness specified in the table on page 146.

8. For sand-lightweight concrete, in lieu of ACI 318 Section D.3.6, modify the value of concrete breakout by 0.6. All-lightweight concrete is beyond the scope of this table.

C-A-2016 @ 2015 SIMPSON STRONG-TIE COMPANY INC.

SIMPSOI

LW

ron

* See page 12 for an explanation of the load table icons.

Stainless-Steel Strong-Bolt® 2 Shear Strength Design Data¹

Strong-Bolt[®] 2 Design Information — Concrete

Characteristic Symbol Units						Nominal Anchor Diameter, d _a (in.)					
	Symbol	UIIIIS	1⁄46	3/	8 ⁷	1/	27	5/	⁄8 ⁷	3/	47
Anchor Category	1, 2 or 3	—					l				
Nominal Embedment Depth	h _{nom}	in.	1¾	1 1 1/8	21⁄8	2¾	31⁄8	3%	51⁄8	41⁄8	5¾
	Steel Str	ength in	Shear (ACI 318 Se	ction D.6	.1)						
Steel Strength in Shear	V _{sa}	lb.	1,605	3,0)85	7,2	45	6,745	10,760	15,	045
Strength Reduction Factor — Steel Failure ²	ϕ_{sa}	—				0.	65				
Conc	rete Break	out Stren	gth in Shear (ACI 3	318 Secti	on D.6.2)	8					
Outside Diameter	da	in.	0.250	0.3	375	0.500		0.6	625 0.7		50
Load Bearing Length of Anchor in Shear	ℓ_e	in.	1.500	1.500	2.500	2.250	3.375	2.750	4.500	3.375	5.000
Strength Reduction Factor — Concrete Breakout Failure ³	ϕ_{cb}	L				0.	70				
Cor	ncrete Pryo	ut Streng	th in Shear (ACI 3	18 Sectio	on D.6.3)						
Coefficient for Pryout Strength	k _{cp}		1.0		2.0	1.0			2.0		
Effective Embedment Depth	h _{ef}	in.	11⁄2	1 ½	21⁄2	21⁄4	3%	2¾	41⁄2	3%	5
Strength Reduction Factor — Concrete Pryout Failure ⁴	ϕ_{cp}		0.70								
Steel Stree	ngth in She	ar for Sei	smic Applications	(ACI 318	Section	D.3.3.)					
Shear Strength of Single Anchor for Seismic Loads (f'_c=2,500 psi)	V _{sa.eq}	lb.	. — ⁵ 3,085 6,100 6,745 10,760 13					13,	620		
Strength Reduction Factor — Steel Failure ²	ϕ_{sa}		- 0.65								

1. The information presented in this table must be used in conjunction with the design criteria of ACI 318 Appendix D, except as modified below.

2. The tabulated value of ϕ_{sa} applies when the load combinations of Section 1605.2.1 of the IBC or ACI 318 Section 9.2 are used and the requirements of ACI 318 D.4.3(c) Condition B are met. If the load combinations of ACI 318 Appendix C are used, the appropriate value of ϕ_{sa} must be determined in accordance with ACI 318 D.4.3.(c) for Strong-Bolt 2 anchors are ductile steel elements as defined in ACI 318 D.1.

3. The tabulated value of ϕ_{cb} applies when both the load combinations of Section 1605.2.1 of the IBC or ACI 318 Section 9.2 are used and the requirements of ACI 318 D.4.3(c) for Condition B are met. Condition B applies where supplementary reinforcement is not provided. For installations where complying supplementary reinforcement can be verified, the ϕ_{cb} factors described in ACI 318 D.4.3 for Condition A are allowed. If the load combinations of ACI 318 Section 9.2 are used and the requirements of ACI 318 Section D.4.3 for Condition A are met, the appropriate value of ϕ_{cb} must be determined in accordance with ACI 318 D.4.3(c). If the load combinations of ACI 318 Appendix C are used, the appropriate value of ϕ_{cb} must be determined in accordance with ACI 318 D.4.4(c).

4. The tabulated value of ϕ_{CD} applies when both the load combinations of ACI 318 Section 9.2 are used and the requirements of ACI 318 D.4.3(c) for Condition B are met. If the load combinations of ACI 318 Appendix C are used, appropriate value of ϕ_{cp} must be determined in accordance with ACI 318 Section D.4.4(c). 5. The 1/4-inch diameter stainless-steel Strong-Bolt 2 anchor installation in cracked concrete is beyond the scope of this report.

6. The 1/4-inch diameter (6.4mm) anchor may be installed in top of uncracked normal-weight and sand-lightweight concrete over profile steel deck, where concrete thickness above upper flute meets the minimum thickness specified in the table on page 147.

7. The %-inch through %-inch diameter (9.5mm through 19.1mm) anchors may be installed in top of cracked and uncracked normal-weight and sand-lightweight concrete over profile steel deck, where concrete thickness above upper flute meets the minimum thickness specified in the table on page 147.

8. For sand-lightweight concrete, in lieu of ACI 318 Section D.3.6, modify the value of concrete breakout by 0.6. All-lightweight concrete is beyond the scope of this table

151

Mechanical Anchors

SIMPSO

Sirong

Carbon Steel Strong-Bolt[®] 2 Information for Installation in the Topside of Concrete-Filled Profile Steel Deck Floor and Roof Assemblies^{1,2,3,4}

For SI: 1 inch = 25.4mm; 1 lbf = 4.45N

1. Installation must comply with the table on page 146 and Figure 1 below.

2. Design capacity shall be based on calculations according to values in the tables on pages 148 and 150.

3. Minimum flute depth (distance from top of flute to bottom of flute) is 11/2 inches.

4. Steel deck thickness shall be a minimum 20 gauge.

5. Minimum concrete thickness (hmin, deck) refers to concrete thickness above upper flute.

Stainless-Steel Strong-Bolt[®] 2 Information for Installation in the Topside of Concrete-Filled Profile Steel Deck Floor and Roof Assemblies^{1,2,3,4}

Design Information	Symbol	Unito	Nomin	al Anchor Diamet	er (in.)
Design mormation	Symbol	Units	3	/8	1⁄2
Nominal Embedment Depth	h _{nom}	in.	1	7/8	2¾
Effective Embedment Depth	h _{ef}	in.	1	1/2	21⁄4
Minimum Concrete Thickness ⁵	h _{min,deck}	in.	21⁄2	31⁄4	31⁄4
Critical Edge Distance	Cac, deck, top	in.	43⁄4	4	4
Minimum Edge Distance	C _{min,deck,top}	in.	4	3⁄4	6
Minimum Spacing	S _{min,deck,top}	in.	6	1/2	8

For SI: 1 inch = 25.4mm; 1 lbf = 4.45N

1. Installation must comply with the table on page147 and Figure 1 below.

2. Design capacity shall be based on calculations according to values in the tables on pages 149 and 151.

3. Minimum flute depth (distance from top of flute to bottom of flute) is 11/2 inches.

4. Steel deck thickness shall be a minimum 20 gauge.

5. Minimum concrete thickness (hmin,deck) refers to concrete thickness above upper flute.

152

SIMPSON

Strong-T

IBC

IBC

Strong-Bolt[®] 2 Design Information — Concrete

Carbon Steel Strong-Bolt® 2 Tension and Shear Strength Design

Data for the Soffit of Concrete over Profile Steel Deck Floor and Roof Assemblies^{1,2,6,8,9}

IBC

			Nominal Anchor Diameter (in.)											
Characteristic	Symbol	Unito				C	arbon Stee	el						
Gilaracteristic	Symbol	Units			L	ower Flute	9			Upper	Flute			
			3,	8	1/	2	5/	8	3⁄4	3⁄8	1⁄2			
Nominal Embedment Depth	h _{nom}	in.	2	33⁄8	23⁄4 41⁄2		3%	5%	41⁄8	2	2¾			
Effective Embedment Depth	h _{ef}	in.	15% 3		21⁄4	4	2¾	5	33⁄8	1 5⁄8	21⁄4			
Installation Torque	T _{inst}	ftlbf.	30		60		90		150	30	60			
Pullout Strength, concrete on metal deck (cracked) ^{3,4}	N _{p,deck,cr}	lb.	1,0407	2,6157	2,0407	2,7307	2,615 ⁷	4,9907	2,8157	1,340 ⁷	3,7857			
Pullout Strength, concrete on metal deck (uncracked) ^{3,4}	N _{p,deck,uncr}	lb.	1,7657	3,150 ⁷	2,580 ⁷	3,8407	3,6857	6,565 ⁷	3,8007	2,275 ⁷	4,795 ⁷			
Pullout Strength, concrete on metal deck (seismic) ^{3,4}	N _{p,deck,eq}	lb.	1,040 ⁷	2,615 ⁷	2,0407	2,7307	2,615 ⁷	4,9907	2,815 ⁷	1,3407	3,785 ⁷			
Steel Strength in Shear, concrete on metal deck5	V _{sa,deck}	lb.	1,595	3,490	2,135	4,580	2,640	7,000	4,535	3,545	5,920			
Steel Strength in Shear, concrete on metal deck (seismic) ⁵	V _{sa,deck,eq}	lb.	1,595	3,490	1,920	4,120	2,375	6,300	3,690	3,545	5,330			

1. The information presented in this table must be used in conjunction with the design criteria of ACI 318 Appendix D, except as modified below.

- 2. Profile steel deck must comply with the configuration in Figure 2 on the previous page, and have a minimum base-steel thickness of 0.035 inch [20 gauge]. Steel must comply with ASTM A 653/A 653M SS Grade 33 with minimum yield strength of 33,000 psi. Concrete compressive strength shall be 3,000 psi minimum.
- 3. For anchors installed in the soffit of sand-lightweight or normal-weight concrete over metal deck floor and roof assemblies, calculation of the concrete breakout strength may be omitted.
- 4. In accordance with ACI 318 Section D.5.3.2, the nominal pullout strength in cracked concrete for anchors installed in the soffit of sand-lightweight or normal-weight concrete over metal deck floor and rood assemblies Np, deck, or shall be substituted for N_{p,cr}. Where analysis indicates no cracking at service

loads, the normal pullout strength in uncracked concrete N_{p,deck,uncr} shall be substituted for N_{p,uncr}. For seismic loads, N_{p,deck,eq} shall be substituted for N_p

- 5. In accordance with ACI 318 Section D.6.1.2(c), the shear strength for anchors installed in the soffit of sand-lightweight or normal-weight concrete over metal deck floor and rood assemblies Vsa, deck shall be substituted for V_{sa} . For seismic loads, $V_{sa,deck,eq}$ shall be substituted for V_{sa} .
- 6. The minimum anchor spacing along the flute must be the greater of 3.0h_{ef} or 1.5 times the flute width.
- 7. The characteristic pull-out strength for greater concrete compressive strengths shall be increased by multiplying the tabular value by (f'_c / 3,000 psi)^{0.5}.
- 8. Concrete shall be normal-weight or structural sand-lightweight concrete having a minimum specified compressive strength, f'c, of 3,000 psi.

9. Minimum distance to edge of panel is 2hef.

Stainless Steel Strong-Bolt® 2 Tension and Shear Strength Design Data for the Soffit of Concrete over Profile Steel Deck Floor and Roof Assemblies^{1,2,6,10,11}

						St	ainless Ste	eel			
Characteristic	Symbol	Units			l	Lower Flut	e			Uppei	r Flute
			3,	/8	1,	/2	5,	/8	3⁄4	3⁄8	1⁄2
Nominal Embedment Depth	h _{nom}	in.	2	3¾	2¾	41⁄2	3%	5%	41⁄8	2	2¾
Effective Embedment Depth	h _{ef}	in.	1 5⁄8	3	21⁄4	4	2¾	5	3¾	1 5⁄8	21⁄4
Installation Torque	T _{inst}	ftlbf.	30		60		80		150	30	60
Pullout Strength, concrete on metal deck (cracked) ³	N _{p,deck,cr}	lb.	1,230 ⁸	2,605 ⁸	1,990 ⁷	2,550 ⁷	1,750 ⁹	4,020 ⁹	3,0307	1,550 ⁸	2,0557
Pullout Strength, concrete on metal deck (uncracked) ³	N _{p,deck,uncr}	lb.	1,580 ⁸	3,950 ⁸	2,475 ⁷	2,6607	2,470 ⁷	5,000 ⁷	4,275 ⁹	1,990 ⁸	2,5607
Pullout Strength, concrete on metal deck (seismic)5	N _{p,deck,eq}	lb.	1,230 ⁸	2,345 ⁸	1,990 ⁷	2,550 ⁷	1,750 ⁹	4,020 ⁹	3,0307	1,550 ⁸	2,0557
Steel Strength in Shear, concrete on metal deck ⁴	Vsa,deck	lb.	2,285	3,085	3,430	4,680	3,235	5,430	6,135	3,085	5,955
Steel Strength in Shear, concrete on metal deck (seismic) ⁵	V _{sa,deck,eq}	lb.	2,285	3,085	2,400	3,275	3,235	5,430	5,520	3,085	4,170

- 1. The information presented in this table must be used in conjunction with the design criteria of ACI 318 Appendix D, except as modified below.
- 2. Profile steel deck must comply with the configuration in Figure 2 on the previous page, and have a minimum base-steel thickness of 0.035 inch [20 gauge]. Steel must comply with ASTM A 653/A 653M SS Grade 33 with minimum yield strength of 33,000 psi. Concrete compressive strength shall be 3.000 psi minimum.
- 3. For anchors installed in the soffit of sand-lightweight or normal-weight concrete over metal deck floor and roof assemblies, calculation of the concrete breakout strength may be omitted.
- 4. In accordance with ACI 318 Section D.5.3.2, the nominal pullout strength in cracked concrete for anchors installed in the soffit of sand-lightweight or normal-weight concrete over metal deck floor and rood assemblies Np, deck, cr shall be substituted for $N_{p,cr}$. Where analysis indicates no cracking at service loads, the normal pullout strength in uncacked concrete $N_{p,deck,uncr}$ shall be substituted for $N_{p,uncr}$. For seismic loads, $N_{p,deck,eq}$ shall be substituted for $N_{p,uncr}$.
- 5. In accordance with ACI 318 Section D.6.1.2(c), the shear strength for anchors installed in the soffit of sand-lightweight or normal-weight concrete over metal deck floor and rood assemblies Vsa, deck shall be substituted for Vsa. For seismic loads, Vsa, deck,eg shall be substituted for Vsa.
- 6. The minimum anchor spacing along the flute must be the greater of 3.0hef or 1.5 times the flute width.
- The characteristic pull-out strength for greater concrete compressive strengths 7. shall be increased by multiplying the tabular value by (f'c / 3,000 psi)0.5
- 8. The characteristic pull-out strength for greater concrete compressive strengths shall be increased by multiplying the tabular value by (f'c / 3,000 psi)0.3
- 9. The characteristic pull-out strength for greater concrete compressive strengths shall be increased by multiplying the tabular value by (f'c / 3,000 psi)0.4
- 10. Concrete shall be normal-weight or structural sand-lightweight concrete having a minimum specified compressive strength, f'c, of 3,000 psi.
- 11. Minimum distance to edge of panel is 2hef.

C-A-2016 @ 2015 SIMPSON STRONG-TIE COMPANY INC.

Carbon Steel Strong-Bolt[®] 2 Tension Design Strengths in Normal-Weight Concrete ($f'_c = 2,500 \text{ psi}$)

		Min. Critical		Minimum			Te	nsion Desig	n Strength (II	o.)		
Anchor Dia.	Nominal Embed. Depth	Concrete Thickness	Edge Distance	Edge Distance	Edge	Distances	= c _{ac} on all s	ides	Edge	Distances = and c _{ac} on	= c _{min} on one three sides	side
(in.)	(in.)	h _{min}	C _{ac}	C _{min}	SDC	A-B ⁵	SDC (C-F ^{6,7}	SDC	A-B⁵	SDC (C-F ^{6,7}
		()	()	()	Uncracked	Cracked	Uncracked	Cracked	Uncracked	Cracked	Uncracked	Cracked
1⁄4	1 3⁄4	31⁄4	21⁄2	1 3⁄4	1,435	—	_	—	1,070	—	—	—
3/	1 7⁄8	31⁄4	61⁄2	6	1,435	845	1,075	635	1,325	845	990	635
98	21/8	4 1/2	6	6	2,170	1,805	1,630	1,355	2,170	1,805	1,630	1,355
1/	2¾	4 1/2	7	7	2,350	1,865	1,760	1,400	2,350	1,865	1,760	1,400
1/2	31⁄8	6	71⁄2	4	3,415	2,430	2,560	1,820	2,740	2,430	2,055	1,820
5/	3%	51⁄2	71⁄2	61⁄2	3,555	2,520	2,665	1,890	3,085	2,520	2,310	1,890
9/8	51/8	71⁄8	9	61⁄2	5,865	4,480	4,400	3,360	5,420	4,480	4,065	3,360
3/	41⁄8	6¾	9	61⁄2	4,625	3,425	3,470	2,570	3,495	3,425	2,620	2,570
9/4	5¾	8¾	8	61⁄2	5,765	5,525	4,325	4,145	5,765	5,525	4,325	4,145
-1	51⁄4	9	18	8	4,600	4,235	3,450	3,175	2,800	4,235	2,100	3,175
I	9¾	13½	131⁄2	8	5,330	6,150	3,995	4,615	5,330	6,150	3,995	4,615

1. Tension design strengths are based on the strength design provisions of ACI 318-11 Appendix D.

2. Tabulated values are for a single anchor with no influence of another anchor.

3. Interpolation between embedment depths is not permitted.

4. Strength reduction factor, ϕ , is based on using a load combination from ACI 318-11 Section 9.2.

5. The tension design strength listed for SDC (Seismic Design Category) A-B may also be used in SDC C-F when the tension component of the strength-level seismic design load on the anchor does not exceed 20% of the total factored tension load on the anchor associated with the same load combination.

6. When designing anchorages in SDC C-F, the designer shall consider the ductility requirements of ACI 318-11 Section D.3.3.

7. Tension design strengths in SDC C-F have been adjusted by 0.75 factor in accordance with ACI 318-11 Section D.3.3.4.4.

Carbon Steel Strong-Bolt® 2 Allowable Tension Loads in Normal-Weight Concrete (f'_c = 2,500 psi) — Static Load

Anohor Dia Nominal						Allowable Ten	sion Load (lb.)		
Anchor Dia. (in.)	Nominal Embed. Depth (in.)	Min. Concrete Thickness h _{min} (in.)	Critical Edge Distance c _{ac} (in.)	Minimum Edge Distance c _{min} (in.)	Edge Dis c _{ac} on a	tances = all sides	Edge Distances = c_{min} on one side and c_{ac} on three sides		
		, , ,			Uncracked	Cracked	Uncracked	Cracked	
1⁄4	13⁄4	31⁄4	21⁄2	13⁄4	1,025		765		
34	1 7⁄8	31⁄4	61⁄2	6	1,025	605	945	605	
98	21/8	41⁄2	6	6	1,550	1,290	1,550	1,290	
1/	23⁄4	41⁄2	7	7	1,680	1,330	1,680	1,330	
/2	31/8	6	71⁄2	4	2,440	1,735	1,955	1,735	
54	33⁄8	51⁄2	71⁄2	61⁄2	2,540	1,800	2,205	1,800	
98	51/8	71⁄8	9	61⁄2	4,190	3,200	3,870	3,200	
3/	41⁄8	6¾	9	61⁄2	3,305	2,445	2,495	2,445	
9/4	53⁄4	8¾	8	61⁄2	4,120	3,945	4,120	3,945	
1	51⁄4	9	18	8	3,285	3,025	2,000	3,025	
1	93⁄4	131⁄2	131⁄2	8	3,805	4,395	3,805	4,395	

1. Allowable tension loads are calculated based on the strength design provision of ACI 318-11 Appendix D using a conversion factor of α = 1.4. The conversion factor α is based on the load combination 1.2D + 1.6L assuming 50% dead load and 50% live load: 1.2(0.5) + 1.6(0.5) = 1.4.

2. Tabulated values are for a single anchor with no influence of another anchor.

3. Interpolation between embedment depths is not permitted.

IBC

SIMPSON

Strong

Carbon Steel Strong-Bolt® 2 Allowable Tension Loads in Normal-Weight Concrete (f'_c = 2,500 psi) — Wind Load

IBC 🚺 🚺

IBC

						Allowable Ten	sion Load (lb.)		
Anchor Dia. (in.)	Nominal Embed. Depth (in.)	Min. Concrete Thickness h _{min} (in.)	Critical Edge Distance c _{ac} (in.)	Minimum Edge Distance c _{min} (in.)	Edge Dis c _{ac} on a	tances = III sides	$\begin{array}{l} \mbox{Edge Distances} = \mbox{c}_{min} \mbox{ on one} \\ \mbox{side and } \mbox{c}_{ac} \mbox{ on three sides} \end{array}$		
					Uncracked	Cracked	Uncracked	Cracked	
1⁄4	13⁄4	31⁄4	21⁄2	13⁄4	860	—	640	—	
3/	1 7⁄8	31⁄4	61⁄2	6	860	505	795	505	
9/8	21/8	41⁄2	6	6	1,300	1,085	1,300	1,085	
1/	23⁄4	41⁄2	7	7	1,410	1,120	1,410	1,120	
/2	31⁄8	6	71⁄2	4	2,050	1,460	1,645	1,460	
5/	33⁄8	51/2	7 1⁄2	61⁄2	2,135	1,510	1,850	1,510	
78	51/8	71/8	9	61⁄2	3,520	2,690	3,250	2,690	
3/	41⁄8	6¾	9	61⁄2	2,775	2,055	2,095	2,055	
9/4	53⁄4	8¾	8	61⁄2	3,460	3,315	3,460	3,315	
1	51⁄4	9	18	8	2,760	2,540	1,680	2,540	
I	93⁄4	131⁄2	13½	8	3,200	3,690	3,200	3,690	

1. Allowable tension loads are calculated based on the strength design provision of ACI 318-11 Appendix D using a conversion factor

of $\alpha = 1.67$. The conversion factor α is based on the load combination assuming 100% wind load.

2. Tabulated values are for a single anchor with no influence of another anchor.

3. Interpolation between embedment depths is not permitted.

Carbon Steel Strong-Bolt® 2 Allowable Tension Loads in Normal-Weight Concrete (f' $_{\rm C}$ = 2,500 psi) — Seismic Load

Nominal Min Concrete					Allowable Tension Load (lb.)									
Anchor Dia.	Nominal Embed. Depth	Min. Concrete Thickness hmin	Critical Edge Distance c _{ac}	Minimum Edge Distance c _{min}	Edge	Distances	= c _{ac} on all s	ides	Edge Distances = c_{min} on one side and c_{ac} on three sides					
(in.)	(in.)	(in.)	(in.)	(in.)	SDC	A-B ⁴	SDC (C-F ^{5,6}	SDC	A-B ⁴	SDC (C-F ^{5,6}		
					Uncracked	Cracked	Uncracked	Cracked	Uncracked	Cracked	Uncracked	Cracked		
1⁄4	1 3⁄4	31⁄4	21⁄2	1 3⁄4	1,005	—	_	—	750	_	_	—		
3/	1 1 1/8	31⁄4	61⁄2	6	1,005	590	755	445	930	590	695	445		
98	21/8	41/2	6	6	1,520	1,265	1,140	950	1,520	1,265	1,140	950		
1/	2¾	41/2	7	7	1,645	1,305	1,230	980	1,645	1,305	1,230	980		
1/2	31⁄8	6	71⁄2	4	2,390	1,700	1,790	1,275	1,920	1,700	1,440	1,275		
5/	3¾	51/2	71⁄2	61⁄2	2,490	1,765	1,865	1,325	2,160	1,765	1,615	1,325		
78	51⁄8	71⁄8	9	61⁄2	4,105	3,135	3,080	2,350	3,795	3,135	2,845	2,350		
3/.	41⁄8	6¾	9	61⁄2	3,240	2,400	2,430	1,800	2,445	2,400	1,835	1,800		
94	5¾	8¾	8	61⁄2	4,035	3,870	3,030	2,900	4,035	3,870	3,030	2,900		
1	51⁄4	9	18	8	3,220	2,965	2,415	2,225	1,960	2,965	1,470	2,225		
1	9¾	13½	13½	8	3,730	4,305	2,795	3,230	3,730	4,305	2,795	3,230		

1. Allowable tension loads are calculated based on the strength design provision of ACI 318-11 Appendix D using a conversion factor of $\alpha = \frac{1}{2}.7 = 1.43$. The conversion factor α is based on the load combination assuming 100% seismic load.

2. Tabulated values are for a single anchor with no influence of another anchor.

3. Interpolation between embedment depths is not permitted.

The allowable tension load listed for SDC (Seismic Design Category) A-B may also be used in SDC C-F when the tension component of the strength-level seismic design load on the anchor does not exceed 20% of the total factored tension load on the anchor associated with the same load combination.
 When designing anchorages in SDC C-F, the designer shall consider the ductility requirements of ACI 318-11 Section D.3.3.

6. Tension design strengths in SDC C-F have been adjusted by 0.75 factor in accordance with ACI 318-11 Section D.3.3.4.4.

IBC

IBC

Stainless Steel Strong-Bolt[®] 2 Tension Design Strengths in Normal-Weight Concrete (f'_c = 2,500 psi)

			Critical Edge Distance c _{ac}		Tension Design Strength (lb.)								
Anchor Dia.	Nominal Embed. Denth	Min. Concrete Thickness hmin		Minimum Edge Distance Cmin	Edge	Distances	= c _{ac} on all s	sides	Edge Distances = c_{min} on one side and c_{ac} on three sides				
(in.)	(in.)	(in.)	(in.)	(in.)	SDC	A-B⁵	SDC (C-F ^{6,7}	SDC	A-B⁵	SDC (C-F ^{6,7}	
					Uncracked	Cracked	Uncracked	Cracked	Uncracked	Cracked	Uncracked	Cracked	
1⁄4	1 3⁄4	31⁄4	21⁄2	1 3⁄4	1,250	—	_	—	1,070	—	—	—	
3/	1 1 1/8	31⁄4	61⁄2	6	1,435	1,015	1,075	760	1,325	1,015	990	760	
9/8	21⁄8	41/2	81⁄2	6	3,085	2,045	2,090	1,380	2,175	2,045	1,630	1,380	
1/	2¾	41/2	61⁄2	61⁄2	2,100	1,665	1,575	1,250	2,100	1,665	1,575	1,250	
72	31/8	6	7	5	2,920	2,800	2,190	2,100	2,920	2,800	2,190	2,100	
5/	3%	51/2	71⁄2	4	3,555	2,520	2,665	1,890	1,910	2,460	1,430	1,845	
9/8	51/8	71/8	9	4	4,950	4,255	3,710	3,190	3,905	3,685	2,925	2,765	
3/.	41⁄8	6¾	8	6	4,835	3,425	3,625	2,570	3,625	3,425	2,720	2,570	
74	5¾	8¾	8	6	6,255	5,350	4,690	4,010	6,255	5,225	4,690	3,920	

1. Tension design strengths are based on the strength design provisions of ACI 318-11 Appendix D.

2. Tabulated values are for a single anchor with no influence of another anchor.

3. Interpolation between embedment depths is not permitted.

4. Strength reduction factor, ϕ , is based on using a load combination from ACI 318-11 Section 9.2.

The tension design strength listed for SDC (Seismic Design Category) A-B may also be used in SDC C-F when the tension component of the strength-level seismic design load on the anchor does not exceed 20% of the total factored tension load on the anchor associated with the same load combination.
 When designing anchorages in SDC C-F, the designer shall consider the ductility requirements of ACI 318-11 Section D.3.3.

7. Tension design strengths in SDC C-F have been adjusted by 0.75 factor in accordance with ACI 318-11 Section D.3.3.4.4.

Stainless Steel Strong-Bolt® 2 Allowable Tension Loads in Normal-Weight Concrete (f' $_{\rm c}$ = 2,500 psi) — Static Load

				Minimum Edge Distance c _{min} (in.)	Allowable Tension Load (lb.)					
Anchor Dia. (in.)	Nominal Embed. Depth (in.)	Min. Concrete Thickness h _{min} (in.)	Critical Edge Distance c _{ac} (in.)		Edge Distances =	= c _{ac} on all sides	$\begin{array}{l} \mbox{Edge Distances} = c_{min} \mbox{ on one side} \\ \mbox{ and } c_{ac} \mbox{ on three sides} \end{array}$			
					Uncracked	Cracked	Uncracked	Cracked		
1⁄4	13⁄4	31⁄4	21⁄2	1 3⁄4	895	—	765	—		
3/	1 1 1/8	31⁄4	61⁄2	6	1,025	725	945	725		
98	21/8	4 1/2	81⁄2	6	2,205	1,460	1,555	1,460		
1/-	23⁄4	41⁄2	61⁄2	61⁄2	1,500	1,190	1,500	1,190		
72	31/8	6	7	5	2,085	2,000	2,085	2,000		
5/	33⁄8	51/2	71⁄2	4	2,540	1,800	1,365	1,755		
78	51⁄8	71⁄8	9	4	3,535	3,040	2,790	2,630		
3/	41⁄8	6¾	8	6	3,455	2,445	2,590	2,445		
94	53⁄4	8¾	8	6	4,470	3,820	4,470	3,730		

1. Allowable tension loads are calculated based on the strength design provision of ACI 318-11 Appendix D using a conversion factor of α = 1.4. The conversion factor α is based on the load combination 1.2D + 1.6L assuming 50% dead load and 50% live load: 1.2(0.5) + 1.6(0.5) = 1.4.

 $\ensuremath{\mathbf{2}}.$ Tabulated values are for a single anchor with no influence of another anchor.

3. Interpolation between embedment depths is not permitted.

Stainless Steel Strong-Bolt® 2 Allowable Tension Loads in Normal-Weight Concrete (f' $_{\rm C}$ = 2,500 psi) — Wind Load

1. Allowable tension loads are calculated based on the strength design provision of ACI 318-11 Appendix D using a conversion

factor of $\alpha = 1.67$. The conversion factor α is based on the load combination assuming 100% wind load

2. Tabulated values are for a single anchor with no influence of another anchor.

3. Interpolation between embedment depths is not permitted.

Stainless Steel Strong-Bolt[®] 2 Allowable Tension Loads in Normal-Weight Concrete (f' $_{\rm c}$ = 2,500 psi) — Seismic Load

· · · ·													
		Min	Oritical	Minimum			All	owable Ter	nsion Load (I	b.)			
Anchor Dia.	Nominal Embed. Depth	Concrete Thickness	Edge Distance	Edge Distance	Edge	Distances	= c _{ac} on all s	sides	Edge Distances = c_{min} on one side and c_{ac} on three sides				
(in.)	(in.)	h _{min}	C _{ac}	C _{min}	SDC	A-B ⁴	SDC	C-F ^{5,6}	SDC	A-B ⁴	SDC (C-F ^{5,6}	
		(11.)	(111.)	()	Uncracked	Cracked	Uncracked	Cracked	Uncracked	Cracked	Uncracked	Cracked	
1⁄4	13⁄4	31⁄4	21⁄2	1 3⁄4	875	—	—	—	750	—	—	—	
3/	1 1 1/8	31⁄4	61⁄2	6	1,005	710	755	530	930	710	695	530	
78	21/8	41/2	81⁄2	6	2,160	1,430	1,465	965	1,525	1,430	1,140	965	
1/	23⁄4	41/2	61⁄2	61⁄2	1,470	1,165	1,105	875	1,470	1,165	1,105	875	
1/2	31⁄8	6	7	5	2,045	1,960	1,535	1,470	2,045	1,960	1,535	1,470	
5/	3%	51⁄2	7 1/2	4	2,490	1,765	1,865	1,325	1,335	1,720	1,000	1,290	
78	51⁄8	71⁄8	9	4	3,465	2,980	2,595	2,235	2,735	2,580	2,050	1,935	
3/	41⁄8	6¾	8	6	3,385	2,400	2,540	1,800	2,540	2,400	1,905	1,800	
94	5¾	8¾	8	6	4,380	3,745	3,285	2,805	4,380	3,660	3,285	2,745	

1. Allowable tension loads are calculated based on the strength design provision of ACI 318-11 Appendix D using a conversion

factor of $\alpha = \frac{1}{27} = 1.43$. The conversion factor α is based on the load combination assuming 100% seismic load.

2. Tabulated values are for a single anchor with no influence of another anchor.

3. Interpolation between embedment depths is not permitted.

C-A-2016 @ 2015 SIMPSON STRONG-TIE COMPANY INC.

4. The allowable tension load listed for SDC (Seismic Design Category) A-B may also be used in SDC C-F when the tension component of the strength-level seismic design load on the anchor does not exceed 20% of the total factored tension load on the anchor associated with the same load combination.

5. When designing anchorages in SDC C-F, the designer shall consider the ductility requirements of ACI 318-11 Section D.3.3.

6. Tension design strengths in SDC C-F have been adjusted by 0.75 factor in accordance with ACI 318-11 Section D.3.3.4.4.

IBC

SIMPSO

Strong-1

Carbon Steel Strong-Bolt[®] 2 Tension Design Strengths in Soffit of Normal-Weight or Sand-Lightweight Concrete-Filled Profile Steel Deck Assemblies ($f'_c = 3,000$ psi)

SIMPSOI

Strong

								'		
	Nominal				T	ension Desig	n Strength (lb	.)		
Anchor	Embed.	Minimum End		Lowe	r Flute			Uppe	r Flute	
(in.)	Depth	(in.)	SDC .	A-B⁵	SDC (C-F ^{6,7}	SDC	A-B⁵	SDC	C-F ^{6,7}
()	2 31/4		Uncracked	Cracked	Uncracked	Cracked	Uncracked	Cracked	Uncracked	Cracked
34	2	31⁄4	1,145	675	860	505	1,480	870	1,110	655
78	33⁄8	6	2,050	1,700	1,535	1,275	—	—	—	—
1/	23⁄4	41⁄2	1,675	1,325	1,260	995	3,115	2,460	2,340	1,845
72	41⁄2	8	2,495	1,775	1,870	1,330	—		—	
5/	33⁄8	51⁄2	2,395	1,700	1,795	1,275	—		—	
78	5%	10	4,265	3,245	3,200	2,435	—	—	—	—
3⁄4	41⁄8	6¾	2,470	1,830	1,855	1,370	_	_	—	_

1. Tension design strengths are based on the strength design provisions of ACI 318-11 Appendix D.

2. Tabulated values are for a single anchor with no influence of another anchor.

3. Interpolation between embedment depths is not permitted.

4. Strength reduction factor, ϕ , is based on using a load combination from ACI 318-11 Section 9.2.

5. The tension design strength listed for SDC (Seismic Design Category) A-B may also be used in SDC C-F when the tension component of the strength-level seismic design load on the anchor does not exceed 20% of the total factored tension load on the anchor associated with the same load combination.

6. When designing anchorages in SDC C-F, the designer shall consider the ductility requirements of ACI 318-11 Section D.3.3.

7. Tension design strengths in SDC C-F have been adjusted by 0.75 factor in accordance with ACI 318-11 Section D.3.3.4.4.

8. Installation must comply with Figure 2 on page 152.

Carbon Steel Strong-Bolt[®] 2 Allowable Tension Loads in Soffit of Normal-Weight or Sand-Lightweight Concrete-Filled Profile Steel Deck Assemblies (f'_c = 3,000 psi) — Static Load

	Nominal	Minimum End	Allowable Tension Load (lb.)							
Anchor Dia.	Embed. Depth	Distance c _{min}	Lower	⁻ Flute	Upper Flute					
()	(in.)	(in.)	Uncracked	Cracked	Uncracked	Cracked				
3/	2	31⁄4	820	480	1,055	620				
9/8	33%8	6	1,465	1,215	—	—				
1/	23⁄4	41⁄2	1,195	945	2,225	1,755				
/2	41⁄2	8	1,780	1,270	—	—				
5/	33⁄8	51⁄2	1,710	1,215	—	—				
9/8	5%	10	3,045	2,320	—	—				
3⁄4	41⁄8	6¾	1,765	1,305		—				

1. Allowable tension loads are calculated based on the strength design provision of ACI 318-11 Appendix D using a conversion factor of α = 1.4. The conversion factor α is based on the load combination 1.2D +

1.6L assuming 50% dead load and 50% live load: 1.2(0.5) + 1.6(0.5) = 1.4.

2. Tabulated values are for a single anchor with no influence of another anchor.

3. Interpolation between embedment depths is not permitted.

4. Installation must comply with Figure 2 on page 152.

Carbon Steel Strong-Bolt® 2 Allowable Tension Loads in Soffit of Normal-Weight or Sand-Lightweight Concrete-Filled Profile Steel Deck Assemblies (f'_c = 3,000 psi) — Wind Load

Anchor	Nominal Embed.	Minimum End	Allowable Tension Load (lb.)						
Dia.	Depth	Distance c _{min}	Lowei	^r Flute	Upper Flute				
(in.)	(in.)	(in.)	Uncracked	Cracked	Uncracked	Cracked			
3/-	2	31⁄4	685	405	890	520			
98	3%	6	1,230	1,020		—			
1/	23⁄4	41/2	1,005	795	1,870	1,475			
72	41/2	8	1,495	1,065		—			
5/	3%	51⁄2	1,435	1,020		—			
9/8	5%	10	2,560	1,945		—			
3⁄4	41⁄8	6¾	1,480	1,100					

1. Allowable tension loads are calculated based on the strength design provision of ACI 318-11 Appendix D using a conversion factor of $\alpha = \%.6 = 1.67$. The conversion factor α is based on the load combination assuming 100% wind load.

2. Tabulated values are for a single anchor with no influence of another anchor.

3. Interpolation between embedment depths is not permitted.

4. Installation must comply with Figure 2 on page 152.

Carbon Steel Strong-Bolt[®] 2 Allowable Tension Loads in Soffit of Normal-Weight or Sand-Lightweight Concrete-Filled Profile Steel Deck Assemblies ($f_c = 3,000 \text{ psi}$) — Seismic Load

	Nominal	Minimum		Allowable Tension Load (lb.)									
Anchor	Embed.	End Distance		Lowe	r Flute			Upper Flute					
(in.)	Depth	Cmin	SDC A-B ⁴		SDC C-F ^{5,6}		SDC A-B ⁴		SDC C-F ^{5,6}				
. ,	(IN.)	(in.)	Uncracked	Cracked	Uncracked	Cracked	Uncracked	Cracked	Uncracked	Cracked			
34	2	31⁄4	800	475	600	355	1,035	610	775	460			
78	3%	6	1,435	1,190	1,075	895	—	—	—	—			
1/	23⁄4	4 1/2	1,175	930	880	695	2,180	1,720	1,640	1,290			
/2	41⁄2	8	1,745	1,245	1,310	930	—	—	—	—			
54	3%	51⁄2	1,675	1,190	1,255	895	—	—	—	—			
78	5%	10	2,985	2,270	2,240	1,705	—	—	—	—			
3⁄4	41⁄8	6¾	1,730	1,280	1,300	960			_	_			

1. Allowable tension loads are calculated based on the strength design provision of ACI 318-11 Appendix D using a conversion factor of $\alpha = \frac{1}{2} - \frac{1}{2}$. The conversion factor α is based on the load combination assuming 100% seismic load.

2. Tabulated values are for a single anchor with no influence of another anchor.

3. Interpolation between embedment depths is not permitted.

4. The allowable tension load listed for SDC (Seismic Design Category) A-B may also be used in SDC C-F when the tension component of the strength-level seismic design load on the anchor does not exceed 20% of the total factored tension load on the anchor associated with the same load combination.

5. When designing anchorages in SDC C-F, the designer shall consider the ductility requirements of ACI 318-11 Section D.3.3.

6. Tension design strengths in SDC C-F have been adjusted by 0.75 factor in accordance with ACI 318-11 Section D.3.3.4.4. 7. Installation must comply with Figure 2 on page 152.

Stainless Steel Strong-Bolt[®] 2 Tension Design Strengths in Soffit of Normal-Weight or Sand-Lightweight Concrete-Filled Profile Steel Deck Assemblies ($f'_c = 3,000$ psi)

IBC

	Nominal				Те	nsion Desig	n Strength (lb).)			
Anchor	Embed.	Minimum End		Lowe	r Flute		Upper Flute				
(in.)	Depth	(in.)	SDC	A-B⁵	SDC (C-F ^{6,7}	SDC	A-B⁵	SDC (C-F ^{6,7}	
	(in.)		Uncracked	Cracked	Uncracked	Cracked	Uncracked	Cracked	Uncracked	Cracked	
3/	2	31⁄4	1,025	800	770	600	1,295	1,010	970	755	
9/8	33⁄8	6	2,570	1,695	1,735	1,145	—	—	—	—	
1/	23⁄4	41/2	1,610	1,295	1,205	970	1,665	1,335	1,250	1,000	
1/2	41⁄2	8	1,730	1,660	1,295	1,245	—	—	—	—	
54	33⁄8	51/2	1,605	1,135	1,205	855	—	—	—	_	
98	5%	10	3,250	2,615	2,440	1,960	—	—	—	—	
3⁄4	41⁄8	6¾	2,780	1,970	2,085	1,475		_	_	_	

1. Tension design strengths are based on the strength design provisions of ACI 318-11 Appendix D.

2. Tabulated values are for a single anchor with no influence of another anchor.

3. Interpolation between embedment depths is not permitted.

4. Strength reduction factor, ϕ , is based on using a load combination from ACI 318-11 Section 9.2.

5. The tension design strength listed for SDC (Seismic Design Category) A-B may also be used in SDC C-F when the tension component of the strength-level seismic design load on the anchor does not exceed 20% of the total factored tension load on the anchor associated with the same load combination.

IBC

6. When designing anchorages in SDC C-F, the designer shall consider the ductility requirements of ACI 318-11 Section D.3.3.

7. Tension design strengths in SDC C-F have been adjusted by 0.75 factor in accordance with ACI 318-11 Section D.3.3.4.4.

8. Installation must comply with Figure 2 on page 152.

Stainless Steel Strong-Bolt[®] 2 Allowable Tension Loads in Soffit of Normal-Weight or Sand-Lightweight Concrete-Filled Profile Steel Deck Assemblies (f'_c = 3,000 psi) — Static Load

	Nominal	Minimum End		Allowable Ten	sion Load (lb.)	
Anchor Dia.	Embed. Depth	Distance c _{min}	Lowe	r Flute	Upper	[•] Flute
()	(in.)	(in.)	Uncracked	Cracked	Uncracked	Cracked
34	2	31⁄4	730	570	925	720
9/8	3%	6	1,835	1,210		
1/	23⁄4	41⁄2	1,150	925	1,190	955
72	41⁄2	8	1,235	1,185		—
54	33⁄8	51/2	1,145	810		—
9/8	5%	10	2,320	1,870		
3⁄4	41⁄8	6¾	1,985	1,405		

1. Allowable tension loads are calculated based on the strength design provision of ACI 318-11 Appendix D using a conversion factor of α = 1.4. The conversion factor α is based on the load combination 1.2D + 1.6L assuming 50% dead load and 50% live load: 1.2(0.5) + 1.6(0.5) = 1.4.

2. Tabulated values are for a single anchor with no influence of another anchor.

3. Interpolation between embedment depths is not permitted.

4. Installation must comply with Figure 2 on page 152.

IBC

Stainless Steel Strong-Bolt[®] 2 Allowable Tension Loads in Soffit of Normal-Weight or Sand-Lightweight Concrete-Filled Profile Steel Deck Assemblies ($f'_c = 3,000 \text{ psi}$) — Wind Load

	Nominal	Minimum End	Allowable Tension Load (lb.)						
Anchor Dia.	Embed. Depth	Distance c _{min}	Lowei	r Flute	Upper Flute				
()	(in.)	(in.)	Uncracked	Cracked	Uncracked	Cracked			
3/	2	31⁄4	615	480	775	605			
98	33⁄8	6	1,540	1,015	—				
1/	23⁄4	41⁄2	965	775	1,000	800			
72	41/2	8	1,040	995	—				
5/	33⁄8	51/2	965	680	—				
78	5%	10	1,950	1,570	—				
3⁄4	41⁄8	6¾	1,670	1,180	_				

1. Allowable tension loads are calculated based on the strength design provision of ACI 318-11 Appendix D using a conversion factor of $\alpha = \%.6 = 1.67$. The conversion factor α is based on the load combination assuming 100% wind load.

2. Tabulated values are for a single anchor with no influence of another anchor.

3. Interpolation between embedment depths is not permitted.

4. Installation must comply with Figure 2 on page 152.

Stainless Steel Strong-Bolt[®] 2 Allowable Tension Loads in Soffit of Normal-Weight or Sand-Lightweight Concrete-Filled Profile Steel Deck Assemblies ($f'_c = 3,000 \text{ psi}$) — Seismic Load

	Nominal	Minimum		Allowable Tension Load (lb.)									
Anchor	Embed.	End		Lowe	r Flute			Upper Flute					
(in.)	Depth	Cmin	SDC A-B ⁴		SDC C-F ^{5,6}		SDC A-B ⁴		SDC C-F ^{5,6}				
	(in.)	(in.)	Uncracked	Cracked	Uncracked	Cracked	Uncracked	Cracked	Uncracked	Cracked			
3/	2	31⁄4	720	560	540	420	905	705	680	530			
9/8	3%	6	1,800	1,185	1,215	800	—	—	—	—			
14	2¾	41/2	1,125	905	845	680	1,165	935	875	700			
/2	41⁄2	8	1,210	1,160	905	870	—	_	—	_			
5/	3%	51⁄2	1,125	795	845	600	—		—	_			
78	5%	10	2,275	1,830	1,710	1,370	—	—	—	—			
3⁄4	41⁄8	6¾	1,945	1,380	1,460	1,035	—		—	_			

1. Allowable tension loads are calculated based on the strength design provision of ACI 318-11 Appendix D using a conversion

factor of $\alpha = \frac{1}{2}$. The conversion factor α is based on the load combination assuming 100% seismic load.

2. Tabulated values are for a single anchor with no influence of another anchor.

3. Interpolation between embedment depths is not permitted.

4. The allowable tension load listed for SDC (Seismic Design Category) A-B may also be used in SDC C-F when the tension component of the strength-level seismic design load on the anchor does not exceed 20% of the total factored tension load on the anchor associated with the same load combination.

5. When designing anchorages in SDC C-F, the designer shall consider the ductility requirements of ACI 318-11 Section D.3.3. 6. Tension design strengths in SDC C-F have been adjusted by 0.75 factor in accordance with ACI 318-11 Section D.3.3.4.4.

7. Installation must comply with Figure 2 on page 152.

Strong-Bolt® 2 Design Information - Masonry

Carbon-Steel Strong-Bolt[®] 2 Tension and Shear Loads in 8" Lightweight, Medium-Weight and Normal-Weight Grout-Filled CMU

1. The tabulated allowable loads are based on a safety factor of 5.0 for installation under the IBC and IRC.

2. Listed loads may be applied to installations on the face of the CMU wall at least 1 ¼ inch away from headjoints.

3. Values for 8-inch-wide concrete masonry units (CMU) with a minimum specified compressive strength of masonry, f'_m, at 28 days is 1,500 psi.

4. Embedment depth is measured from the outside face of the concrete masonry unit.

5. Tension and shear loads may be combined using the parabolic interaction equation (n = 5%).

6. Refer to allowable load adjustment factors for edge distance and spacing on page 163.

7. Allowable loads may be increased 331/3% for short-term loading due to wind forces or seismic forces where permitted by code.

SIMPSON

F

Sirong

IBC

Installations in this area for full allowable load capacity

Figure 1

Carbon-Steel Strong-Bolt[®] 2 Tension and Shear Loads in 8" Lightweight, Medium-weight and Normal-Weight Grout-Filled CMU

о сідпі.w												
Size	Drill Bit Dia. in.	Drill Bit Min. Embed.	Install.	Min. Edge.	Critical End	cal End Critical	Critical Tension Load S		Shear Load Perp. To Edge		Shear Load Parallel To Edge	
in. (mm)		in. ftlb. (mm) (N-m)	in. (mm)	in. (mm)	Spacing in. (mm)	Ultimate lb. (kN)	Allowable lb. (kN)	Ultimate Ib. (kN)	Allowable lb. (kN)	Ultimate Ib. (kN)	Allowable lb. (kN)	
Anchor Installed in Cell Opening or Web (Top of Wall) (See Figure 2)												
1⁄2 (12.7)	1⁄2	3½ (89)	35 (47.5)	1 ¾ (45)	12 (305)	8 (203)	2,080 (9.3)	415 (1.8)	1,165 (5.2)	235 (1.0)	3,360 (14.9)	670 (3.0)
5% (15.9)	5⁄8	4 % (111)	55 (74.6)	1 ¾ (45)	12 (305)	8 (203)	3,200 (14.2)	640 (2.8)	1,370 (6.1)	275 (1.2)	3,845 (17.1)	770 (3.4)

1. The tabulated allowable loads are based on a safety factor of 5.0 for installation under the IBC and IRC.

2. Values for 8-inch-wide concrete masonry units (CMU) with a minimum specified compressive strength of masonry, f'_{m} , at 28 days is 1,500 psi.

3. Tension and shear loads may be combined using the parabolic interaction equation (n = $\frac{1}{2}$).

4. Refer to allowable load adjustment factors for edge distance and spacing on page 163.

5. Allowable loads may be increased 33% for short-term loading due to wind forces or seismic forces where permitted by code.

Strong-Bolt® 2 Design Information - Masonry

Carbon-Steel Strong-Bolt[®] 2 Allowable Load Adjustment Factors for Face-of-Wall Installation in 8" Grout-Filled CMU: Edge Distance and Spacing, Tension and Shear Loads

How to use these charts:

- 1. The following tables are for reduced edge distance and spacing.
- 2. Locate the anchor size to be used for either a tension and/or shear load application.
- 3. Locate the embedment (E) at which the anchor is to be installed.
- 4. Locate the edge distance (c_{act}) or spacing (s_{act}) at which the anchor is to be installed.

Edge or End Distance Tension (f_c)

	Dia.	1⁄4	3⁄8	1/2	5⁄8	3⁄4
	Ε	13⁄4	2%	31/2	43⁄8	51⁄4
Cact	C _{cr}	12	12	12	20	20
()	C _{min}	2	4	4	4	4
	f _{cmin}	1.00	1.00	1.00	1.00	0.97
2		1.00				
4		1.00	1.00	1.00	1.00	0.97
6		1.00	1.00	1.00	1.00	0.97
8		1.00	1.00	1.00	1.00	0.98
10		1.00	1.00	1.00	1.00	0.98
12		1.00	1.00	1.00	1.00	0.99
14					1.00	0.99
16					1.00	0.99
18					1.00	1.00
20					1.00	1.00

Spacing Tension (f_s)

	Dia.	1⁄4	3⁄8	1⁄2	5⁄8	3⁄4	IBC
	Ε	1¾	25⁄8	31⁄2	43⁄8	51⁄4	
Sact	S _{Cr}	8	8	8	8	8	
(111.)	Smin	4	4	4	4	4	231 232
	f _{smin}	1.00	1.00	0.93	0.86	0.80	(
4		1.00	1.00	0.93	0.86	0.80	
6		1.00	1.00	0.97	0.93	0.90	A
8		1 00	1 00	1 00	1 00	1 00	Ų Ų

- 5. The load adjustment factor ($f_{\rm c} \mbox{ or } f_{\rm s})$ is the intersection of the row and column.
- 6. Multiply the allowable load by the applicable load adjustment factor.
- 7. Reduction factors for multiple edges or spacings are multiplied together.

Edge or End Distance Shear (f _c)								
	Dia.	1⁄4	3⁄8	1/2	5⁄8	3⁄4	IRC	
	Ε	1¾	2%	31⁄2	43%	51⁄4	IDU	
Cact	C _{cr}	12	12	12	20	20		
(111.)	C _{min}	2	4	4	4	4	20120	
	f _{cmin}	0.88	0.71	0.60	0.36	0.28		
2		0.88						
4		0.90	0.71	0.60	0.36	0.28		
6		0.93	0.78	0.70	0.44	0.37		
8		0.95	0.86	0.80	0.52	0.46	(freezent	
10		0.98	0.93	0.90	0.60	0.55		
12		1.00	1.00	1.00	0.68	0.64		
14					0.76	0.73		
16					0.84	0.82		
18					0.92	0.91		
20					1.00	1.00		

Spacing Shear (f_s)

	0	- (3)				
	Dia.	1⁄4	3⁄8	1⁄2	5⁄8	3⁄4
	Ε	13⁄4	25%	31⁄2	43⁄8	51⁄4
Sact	S _{cr}	8	8	8	8	8
(in.)	Smin	4	4	4	4	4
	f _{smin}	1.00	1.00	1.00	1.00	1.00
4		1.00	1.00	1.00	1.00	1.00
6		1.00	1.00	1.00	1.00	1.00
8		1.00	1.00	1.00	1.00	1.00

Load Adjustment Factors for Carbon-Steel Strong-Bolt® 2 Wedge Anchors in Top-of-Wall Installation in 8" Grout-Filled CMU: Edge Distance and Spacing, Tension and Shear Loads

End Distance

C-A-2016 @ 2015 SIMPSON STRONG-TIE COMPANY INC.

iension (t _c)							
Dia.	1⁄2	5⁄8					
Ε	31⁄2	43⁄8					
C _{cr}	12	12					
C _{min}	4	4					
f _{cmin}	1.00	1.00	(<u></u>				
	1.00	1.00					
	1.00	1.00					
	1.00	1.00					
	1.00	1.00					
	1.00	1.00					
	∩ (T _C) Dia. E C _{cr} C _{min} f _{cmin}	Image: first	$\begin{array}{c c c c c c c c c c c c c c c c c c c $				

Dia. ½ 5% E 31/2 4%

	Ε	31⁄2	4%	
Sact	S _{cr}	8	8	
()	S _{min}	4	4	22 22
	f _{cmin}	0.93	0.86	
4		0.93	0.86	
6		0.97	0.93	<u>n n</u>
8		1.00	1.00	

IBC

 * See page 12 for an explanation of the load table icons.

End Distance Shear Perpendicular to Edge (f_c)

Dia.	1/2	5⁄8	IRC
Ε	31⁄2	43⁄8	
Ccr	12	12	-
C _{min}	4	4	87 82
f _{cmin}	0.90	0.83	(~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
	0.90	0.83	
	0.93	0.87	
	0.95	0.92	
	0.98	0.96	
	1.00	1.00	
	Dia. E C _{cr} C _{min} f _{cmin}	Dia. $\frac{1}{2}$ E $3\frac{1}{2}$ C_{cr} 12 C_{min} 4 f_{cmin} 0.90 0.93 0.95 0.98 1.00	Dia. $\frac{1}{2}$ $\frac{5}{8}$ E $3\frac{1}{2}$ $4\frac{3}{8}$ c_{cr} 12 12 c_{min} 4 4 f_{cmin} 0.90 0.83 0.90 0.83 0.93 0.87 0.95 0.92 0.98 0.96 1.00 1.00 1.00 1.00

Spacing Shear Perpendicular or Parallel to Edge (f₂)

orra		Lugu	('s/	
s _{act} (in.)	Dia.	1/2	5⁄8	IBC [*]
	Ε	31⁄2	4%	
	S _{cr}	8	8	-
	S _{min}	4	4	23 23
	f _{cmin}	1.00	1.00	(
4		1.00	1.00	
6		1.00	1.00	n n
8		1.00	1.00	/←→\

End Distance Shear Parallel to Edge (f_c)

Shear rarailer to Luge (ic)						
	Dia.	1⁄2	5⁄8	IRC		
	Ε	31⁄2	43⁄8	ibu		
C _{act}	C _{cr}	12	12	-		
()	C _{min}	4	4	27 22		
	f _{cmin}	0.53	0.50	(***/*		
4		0.53	0.50			
6		0.65	0.63			
8		0.77	0.75			
10		0.88	0.88	- and the second		
12		1.00	1.00			

For footnotes, please see page 200.